
Lecture 1 - And then there was Light!
A Puzzle...

Many fields of physics are often interrelated. As shown in the example below, electrical sparks can form between 

two highly wires, but when they do the spark will always move upwards. This is not an electric effect. Can you 

explain what is happening?

Time

Solution

This phenomenon is more intimately tied to the behavior of gases than to electricity. The spark between the two 

wires (essentially the electrons of the air particles) is hot and therefore rise, and the path of least resistance for the 

spark follows this rising air. This suggests that if you turn the contraption on its side, it should no longer work, as 

shown in this nice explanatory video. □ 

Introduction
Welcome to Ph 1b, Section 6! Congratulations on making it through one term of Caltech. That is not an insignifi-

cant accomplishment, so take a second to enjoy it...now onwards and upwards!

TA’s Information

Name: Tal Einav

Website: http://www.its.caltech.edu/~teinav

Office Hours: Tuesday from 4-5pm in Broad 156

Mathematics

This course will be assume that you know multivariable calculus. If that worries you, take Math 13 or read this 

Math Bootcamp to get yourself speed.
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Text

During the Special Relativity portion of this class, I will be following David Morin’s incredible text Special 

Relativity: For the Enthusiastic Beginner. Once we get into electricity we will follow the class text (David Morin 

and Edward Purcell’s Electricity and Magnetism). The moral of the story is: if you read all of David Morin’s 

books, you will master this course.

Mathematica

Mathematica is free for Caltech students, and I highly recommend you download and invest the time to learn this 

language. My lecture notes will be posted both as Mathematica files and as PDFs, but only the former are 

interactive.

I also use Mathematica notation in my notes. For example, arctan Ay

Ax

 will be written as ArcTan Ay

Ax

 using hard 

brackets “[...]” instead of parenthesis “(...)” and using camel case (i.e. capitalizing the first letter of each word (in 

this case the “A” and “T”)). Similarly, I will write cos(π) as Cos[π]. Although this notation looks a bit strange, it 

has the advantage that it can be plugged directly into Mathematica and evaluated,

Cos[π]

-1

One big advantage is that you will see neat Mathematica applications, especially once we get into electrodynam-

ics. For example, the following models the potential of two electrostatic particles (we will learn about this later in 

the course). If you are viewing this in Mathematica you can change the charge of each particle by moving the 

sliders q1 and q2 at the top, and you can also drag the particles around using the mouse!

Out[ ]=
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A Word to the Wise

Asking Questions

On average, how many questions do you ask in one class period? If your answer is less than 3, you are not asking 

enough questions. If you don’t ask me a question during recitation sessions, then I am wasting my time! In such a 

case, I may as well record myself and not come at all. 

Help make the sections much more dynamic by asking for clarification when you do not understand something. 

And if the pace is fast and you simply need some time to digest what is happening, simply raise your hand and ask 

for some time.

Effective Learning

Effective learning is active. Don’t listen to lectures or read the book passively. Go through derivations yourself (or 

try coming up with your own!). Think about other scenarios and see if you can understand them.

Learning also requires you to fail. The best learners allow themselves to make many mistakes along their journey. 

No fear, no shame - be proud every time that you try!

Special Relativity - Kinematics
After the special relativity part of this course, you will be able to:

◼ Understand and apply the postulates of special relativity

◼ Solve problems from any inertial reference frame

◼ Judge whether special relativity has any true paradoxes

In this part of the course, we will learn that everything that we have learned in Classical Mechanics is wrong. Or, 

perhaps, "incomplete" is a better term for it. For it turns out that Newtonian physics is a limiting case of the more 

correct relativistic theory. It would be silly (to put it mildly) to use relativity to solve a problem involving the 

length of a baseball trajectory. But in problems involving large speeds, or in problems where a high degree of 

accuracy is required, you must use the relativistic theory.

Note: You shouldn’t feel too bad about having spent so much time learning about a theory that is simply the 

limiting case of another theory, because you’re now going to do it again. Relativity is also the limiting case of yet 

another theory (quantum field theory). And likewise, you shouldn’t feel too bad about spending so much time on 

relativity, because quantum field theory is also the limiting case of yet another theory (string theory). And like-

wise...well, you get the idea. It just might actually be turtles all the way down.

Relativity is broken up into two main topics: special relativity (which does not deal with gravity) and general 

relativity (which does). In both fields, light is one of the key players.

Light

The speed of light exactly equals

c = 2.99792458× 108 m

s (1)

but in this class we will approximate it as

c ≈ 3× 108 m

s (2)
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This is one of the few numbers that you will see so frequently that it will be forever ingrained in your heart. 

Because the speed of light is much greater than the speed of everyday objects, most of the consequences of 

relativity are not noticeable in our daily lives. If we lived in a world similar to ours, with the only difference being 

that the speed of light were 100 mph, then the consequences of relativity would be ubiquitous. We wouldn’t think 

twice about time dilations, length contractions, and so on.

An interesting note: Although we will not use it in this class, a common - and somewhat surprising - convention is 

to set c = 1 (note that in this convention, c is unitless!). Why is such a convention useful and how can it be correct?

As we will see in this course, the speed of light c shows up all over the place in both special relativity and electrody

namics. Setting c = 1 simplifies these formulas down. To transform from this convention back into SI units, you 

consider the units of your answer, the units of the desired answer, and multiply by whatever power of c is neces-

sary to equate the two. For example, if you were using this convention and found that an object has an energy 1 kg, 

then in SI units this would imply an energy c2 kilograms, which now indeed has the right units. Note that while 

setting c = 1 simplifies many equations, its prevents you from using unit analysis to check your work! In this 

course, we will keep c = 3×108 m

s
 and stay in SI.

Complementary Section: Postulates

(Complementary Sections describe material that was covered in class.)

The theory of relativity rests upon certain postulates. Recall that an inertial reference frame is a reference frame 

which is not accelerating or rotating. A reference frame moving with a constant velocity relative to an inertial 

reference frame is also an inertial reference frame.

◼ The speed of light has the same value in any inertial reference frame. 

To understand what this means, consider a train moving along the ground at constant velocity (that is, it is not 

accelerating; this is the definition of an inertial frame). Someone on the train shines a light from one point on the 

train to another. Let the speed of the light with respect to the train be c. Then the above postulate says that a person 

on the ground also sees the light move at speed c.

This is a rather bizarre statement. It does not hold for everyday objects. If a baseball is thrown on a train, then the 

speed of the baseball is of course different in different frames. The observer on the ground must add the velocity 

of the train and the velocity of the ball (with respect to the train) to obtain the velocity of the ball with respect to 

the ground (although, as we will find out, this is not exactly true; we will derive the exact velocity addition 

formula later).

The truth of the speed-of-light postulate cannot be demonstrated from first principles. In the end, we must rely on 

experiment. And indeed, all the consequences of the speed-of-light postulate have been verified countless times 

during this century. In particular, the consequences are being verified continually each day in high-energy particle 

accelerators, where elementary particles reach speeds very close to c.

◼ All inertial frames are “equivalent”.

This postulate basically says that one inertial frame is no better than any another. There is no preferred reference 

frame. That is, it makes no sense to say that something is moving; it only makes sense to say that one thing is 

moving with respect to another. This is where the “relativity” in special relativity comes from. There is no abso-

lute frame; the motion of any frame is only defined relative to other frames.

Loss of Simultaneity
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Consider the following setup. In A’s reference frame, a light source is placed midway between two receivers, a 

distance l ' from each. The light source emits a flash. From A’s point of view, the light hits the two receivers at the 

same time, l'
c
 seconds after the flash.

Out[ ]=

Now consider another observer, B, who travels to the left at speed v. In B’s reference frame, the situation looks 

markedly different

Out[ ]=

The receivers (along with everything else in A's frame) are moving to the right at speed v, and the light is traveling 

in both directions at speed c with respect to B (not with respect to the light source, as measured in B's frame; this is 

where the speed-of-light postulate comes into play). Therefore, in B’s frame the light will hit the left receiver at 

time tl =
l

c+v
 and right receiver at time tr =

l

c-v
. These are not equal if v ≠ 0, except for in the special case of l = 0 

(in which case the two events occur simultaneously in all reference frames).

Note that the two distances l ' and l will be different due to length contraction, but that does not matter here; all that 

is important is that a simultaneous event in A’s reference frame does not occur simultaneously in B’s reference 

frame. The moral of this exercise is that it makes no sense to say that one event happens at the same time as 

another, unless you state which frame you’re talking about. Simultaneity depends on the frame in which the 

observations are made.

Let us contrast this with the Newtonian physics that we have used throughout classical mechanics. If instead of 

light we were talking about two baseballs which are thrown at velocity vb in A’s reference frame, then B would see 

these baseballs moving at speeds vb - v to the left and vb + v to the right. The relative speeds between the baseballs 

and the left and right receivers would therefore be (vb - v) + v = vb and (vb + v) - v = vb. These are equal, so B 

would see these two baseballs hit the receiver at the same time, as we well know from everyday experiences. 

Complementary Section: Time Dilation

Let there be a light source on the floor of the train and a mirror on the ceiling, which is a height h above the floor. 

Let observer A be on the train, and observer B be on the ground. The speed of the train is v (with respect to the 

ground). A flash of light is emitted. The light travels up to the mirror and then back down to the source. In A’s 

frame, the train is at rest, with the path of light being vertically upwards and then vertically downwards.

Lecture 1 - 01-10-2019.nb     5

Printed by Wolfram Mathematica Student Edition



Out[ ]=

It takes the light a time h

c
 to reach the ceiling and then a time h

c
 to return to the source. The round-trip time is 

therefore

tA =
2 h

c (3)

In B’s frame, the train moves at speed v with the path of the light moving at diagonals due to the train’s motion. 

Out[ ]=

The crucial fact to remember is that the speed of light in B's frame is still c. This means that the light travels along 

its diagonally upward path at speed c. (The vertical component of the speed is not c, as would be the case if light 

behaved like a baseball.) Since the horizontal component of the light's velocity is v, the vertical component must 

be c2 - v2 .

Out[ ]=

The time it takes to reach the mirror is therefore h

c2-v2
 so the round-trip time is

tB =
2 h

c2-v2 (4)

Therefore we find that the time dilation formula

tB = γ tA (5)

where

γ ≡
1

1- v

c

2 (6)
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is a convenient factor that is ubiquitous factor in relativity. Note that γ ≥ 1 with equality iff (if and only if) v = 0. 

Therefore, if the train is moving, tB > tA.

For concreteness, suppose the train was moving with velocity v = 3
5

c so that γ = 5
4

. Then we may say the follow-

ing. If A is standing next to the light source, and if B is standing on the ground, and if A claps his hands at tA = 4 

second intervals, then B will observe claps at tB = 5 second intervals (after having subtracted off the time for the 

light to travel to her eye, of course). This is true because both A and B must agree on the number of round-trips the 

light beam takes between claps. Assuming, for convenience, that a round-trip takes one second in A’s frame, the 

four round-trips between claps will take five seconds in B’s frame from the above equation tB = γ tA. And if we 

have a train that does not contain one of our special clocks, that’s no matter. We could have built one if we wanted 

to, so the same results concerning the claps must hold. Therefore, B will observe A moving strangely slowly. B 

will observe A’s heart-beat beating slowly; his blinks will be a bit lethargic; and his sips of coffee will be slow 

enough to suggest that he needs another cup.

The time dilation result tB = γ tA is a bit strange, no doubt, but there doesn’t seem to be anything downright 

incorrect about it until we look at the situation from A’s point of view. A sees B flying by at a speed v in the other 

direction. The ground is no more fundamental than a train, so the same reasoning applies. The time dilation factor, 

γ, doesn’t depend on the sign of v, so A sees the same time dilation factor that B sees. That is, A sees B’s clock 

running slow. But how can this be? Are we claiming that A’s clock is slower than B’s, and also that B’s clock is 

slower than A’s?

Well...yes and no. It is true that in A’s frame, B’s clock runs slow while in B’s frame A’s clock runs slow. But this 

is not a contradiction. Observers A and B are using different coordinates to measure time. The times measured in 

each of their frames are quite different things. The seemingly contradictory time-dilation result is really no 

stranger than having two people run away from each other into the distance, and having them both say that the 

other person looks smaller.

You may still find it unsettling that A sees B’s clock run slow and that B sees A’s clock run slow in their own 

reference frames. You may be thinking, “This is a contradiction. It is essentially the same as saying, ‘I have two 

apples on a table. The left one is bigger than the right one, and the right one is bigger than the left one.’” But no, 

we are not comparing apples and apples. We are comparing apples and oranges. A more correct analogy would be 

the following. An apple and an orange sit on a table. The apple says to the orange, “You are a much uglier apple 

than I am,” and the orange says to the apple, “You are a much uglier orange than I am.”

Understanding Time Dilation

So we cannot directly compare what the notion of "time" means in two different reference frames. But we can 

make definitive statements about the time that any event takes in two different reference frames. In the example 

above, the event was the light leaving the source, bouncing off the mirror, and then returning to the source. How 

long does this event take in frame A and frame B?

But now you find yourself in a conundrum: you may analyze the situation in A’s reference frame where B is 

moving or instead in B’s reference frame where A is moving. The former seems to indicate that tA = γ tB while the 

latter indicates that tB = γ tA. However, only one of these statements can be true (otherwise we must have 

tA = tB = 0). How do you determine which one? You simply have to note one thing...

Our assumption that A is at rest on the train was critical in the above derivation. Therefore, only if in frame 

A did two events occur in one location can you use the time dilation formula tB = γ tA above. 

Why was the assumption that A is at rest critical in the above derivation? If A is moving with respect to the train, 

then the above equation tB = γ tA does not hold, because we cannot say that both A and B must agree on the 
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 equation γ  say  agree

number of round-trips the light beam takes between claps, because of the problem of simultaneity. More precisely, 

if A is at rest on the train right next to the light source, then there are no issues with simultaneity because the 

distance between A and B is zero (assuming the train is tiny and the people are point masses, with B practically 

touching the train as it passes). And if A is at rest a fixed distance from the source, then consider a person A ' at rest 

on the train right next to the source. The distance L between A and A ' is non-zero, so there will be a "Head Start" 

effect (discussed in the next Section), so from the loss of simultaneity, B sees their clocks read different times. But 

the difference is constant, so B sees the clock A tick at the same rate as the clock A '. Equivalently, if A was holding 

a light clock, that clock would have the same speed v (and thus yield the same γ factor) as the first clock.

However, if A was moving with respect to the train, then we have a problem. If A ' is again at rest next to the 

source, then the distance L between A and A ' is changing, so B can’t use the reasoning in the previous paragraph to 

conclude that A’s and A '’s clocks tick at the same rate. And in fact they do not, because as above, we can build 

another light clock and have A hold it. In this case, A’s speed is what goes into the γ factor in γ = 11 -
v2

c2 
1/2

, 

but this is different from A '’s speed (which is the speed of the train).

Lastly, you may ask: what if two events happened in one location in frame A (so that we can use tB = γ tA), and 

these same two events also occurred in the same location in frame B (so that we can use tA = γ tB)? There are only 

two ways for this to happen:

1. Either the two frames are not moving relative to one another (in which case they are both the same frame, v = 0, 

and there will not be any time dilation (or, equivalently, there will be time dilation with the factor γ = 1)).

2. The two events occur at the same location and at the same time. In this case, these two events will occur at the 

same location and at the same time in all reference frames (so once again, the time dilation formula holds).
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